algebra::RingWithIdentity< AddOp, MultOp, Element > Struct Template Reference
[Concepts]

Concept RingWithIdentity. More...

#include <algebraic_concepts.hpp>

Inheritance diagram for algebra::RingWithIdentity< AddOp, MultOp, Element >:
algebra::Ring< AddOp, MultOp, Element > algebra::Monoid< MultOp, Element > algebra::AbelianGroup< AddOp, Element > algebra::SemiGroup< MultOp, Element > algebra::Distributive< AddOp, MultOp, Element > algebra::Group< AddOp, Element > algebra::Commutative< AddOp, Element > algebra::Monoid< AddOp, Element > algebra::Inversion< AddOp, Element > algebra::SemiGroup< AddOp, Element > algebra::Associative< AddOp, Element > algebra::DivisionRing< AddOp, MultOp, Element > algebra::Field< AddOp, MultOp, Element > algebra::SkewField< AddOp, MultOp, Element >

List of all members.


Detailed Description

template<typename AddOp, typename MultOp, typename Element>
struct algebra::RingWithIdentity< AddOp, MultOp, Element >

Concept RingWithIdentity.

Parameters:
AddOp A functor implementing a binary operation representing addition
MultOp A functor implementing a binary operation representing multiplication
Element The type upon the binary operation is defined
Refinement of:
  • Ring <AddOp, MultOp, Element>
  • Monoid <MultOp, Element>

The documentation for this struct was generated from the following file:
 All Classes Namespaces Functions Variables Typedefs Enumerations Friends
Generated by  doxygen 1.6.2-20100208